Jul 14, 2008

Longevity risk solved


Holiday news today...

An unknown Dutch actuary (don't quote me !) claims to have found the definitive solution for what's called 'longevity risk'.

Instead of a traditional non-comprehensive actuarial equation, the proof is one of those rare, and sometimes dangerous or wrong, visual proofs in (actuarial) mathematics.



Anyway, have a nice holiday!

Jul 8, 2008

Klantenmonitor Zorgverzekeringen®

Resultaten onderzoek Klantenmonitor Zorgverzekeringen® :

gemiddelde marktscore voor:
- dienstverlening aan klanten: 7,4 (2006:idem)
- probleemafhandeling: 4,9 ( 2006: 5,5)

Eindoordeel dienstverlening
Verzekeraar 2007 2008
Pro Life Zorgverzekering 8.0 8,1
De Friesland Zorgverzekeraar 7.7 7.9
Azivo Zorgverzekeraar 7.5 7.8
DSW Zorgverzekeraar 7.8 7.7
IZA 7.5 7.7
ONVZ Zorgverzekeraar 8.2 7.6
Univé Verzekeringen 7.4 7.6
Zorg en Zekerheid Zorgverzekeraar 7.4 7.5
IZZ 7.4 7.5
FBTO 7.5 7.4
Agis Zorgverzekeringen 7.4 7.4
Groene Land Achmea 7.4 7.4
OHRA 7.4 7.4
CZ 7.3 7.4
Trias Zorgverzekeraar 7.4 7.3
Zilveren Kruis Achmea 7.2 7.3
De Goudse 7.4 7.2
AnderZorg 7.3 7.2
VGZ 6.9 7.2
Avéro Achmea 7.0 7.1
Menzis 7.2 7.0

Jul 7, 2008

Simpson's paradox

Let's take a look at a simple fund management score card.


Fund 1

Fund 2

Fund 1+2


Return Assets Rate Return Assets Rate Return Assets Rate
Fund manager A
8 200 4,0% 72 800 9,0% 80 1000 8,0%
Fund manager B 48 800 6,0% 22 200 11,0% 70 1000 7,0%
Total Fund managers 56 1000 5,6% 94 1000 9,4% 150 2000 7,5%











Clearly Fund manager B performs 2% better in both Fund 1 and 2 than Fund manager A. However, across both funds, Fund manager A seems to perform better.

This effect is called Simpson's paradox.

Keep in minds:
  • Always be critical in ranking mix funds (managers) on overall performance
  • Even if the risk profiles of Fund 1 and 2 are the same, Simpson's paradox may show up
  • Besides choosing the right Fund manager, choosing the right asset mix is just as important

Another nice example of Simpson's paradox is:



Woman

Man

People


Survived # Start Rate Survived # Start Rate Survived # Start Rate
Treatment A 3135 3300 95 4020 6700 60 7155 10000 72
Treatment B 7395 8700 85 650 1300 50 8045 10000 80

A cohort or a series of people receive treatment A, and another cohort receives treatment B. The survival rate of treatment A is better for woman as well as for man, but not for people!

Simpson's Paradox Actuary Links:

  1. Ratemaking: The CEO asks the actuary...
  2. Smokers and survival rates
  3. Credit Score really explains Insurance Losses?